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Introduction

Simultaneous localization and mapping (SLAM) is the 
process by which a mobile robot can construct a map of 
an unknown environment and simultaneously compute its 
location using the map (1). SLAM has been formulated and 
solved as a theoretical problem in many different forms. It 
has been implemented in several domains from indoor to 
outdoor, and the possibility of combining robotic in surgery 
issues has captured the attention of the medical community. 
The common point is that the accuracy of the navigation 
affects the success and the results of a task, independently 

from application field. Since its beginning, the SLAM 
problem has been developed and optimized in different 
ways. There are three main paradigms: Kalman filters (KF), 
particle filters and graph-based SLAM. The first two are 
also referred as filtering techniques, where the position and 
map estimates are augmented and refined by incorporating 
new measurements when they become available. Due to 
their incremental nature, these approaches are generally 
acknowledged as on-line SLAM techniques. Conversely, 
graph-based SLAM estimates the entire trajectory and the 
map from the full set of measurements and it is called full 
SLAM problem. 
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The choice of the type of algorithm to use depends on 
the peculiarities of the application and on many factors, 
such as the desired map resolution, the update time, the 
nature of the environment, the type of sensor the robot is 
equipped with, and so on. 

This article aims to introduce the state of the art of 
SLAM techniques in section II and present in section III 
a focus on SLAM applications in medical fields. Section 
IV draws conclusions on the benefits of employing these 
techniques in surgery.

State of the art SLAM techniques

KF techniques

Smith et al. (2) were the first to present the idea of 
representing the structure of the navigation area in a 
discrete-time state-space framework, introducing the 
concept of stochastic map. As KF original algorithm relies 
on the assumption of linearity, that is rarely fulfilled, two 
variations are mainly employed from then: extended KF 
(EKF) and information filtering (IF). The EKF overcomes 
the linearity assumption describing the next state 
probability and the measurement probabilities by nonlinear  
functions (3). In literature, there exist several examples of 
the use of the EKF algorithm (4-10) and it has been the 
basis of many recent developments in the field (11,12). 

The unscented KF (UKF) has been developed in recent 
years to overcome some main problems of the EKF (13). 
It approximates the state distribution with a Gaussian 
Random Variable, like in EKF, but here it is represented 
using a minimal set of carefully chosen sample points, called 
σ-points. When propagated through the nonlinear system, 
they capture the posterior mean and covariance accurately to 
the 3rd order of the Taylor series for any nonlinearity (14).  
Some examples of the use of UKF for navigation and 
localization can be found in (15-17). 

The dual of the KF is the information filter, that 
relies on the same assumptions but the key difference 
arises in the way the Gaussian belief is represented. The 
estimated covariance and estimated state are replaced by 
the information matrix and information vector respectively. 
It brings to several advantages over the KF: the data is 
filtered by simply summing the information matrices 
and vector, providing more accurate estimates (18); the 
information filter tends to be numerically more stable in 
many applications (3). The KF is more advantageous in the 
prediction step because the update step is additive while 

UKF involves the inversion of two matrices, which means 
an increase of computational complexity with a high-
dimension state space. Anyway, these roles are reversed in 
the measurement step, illustrating the dual character of 
Kalman and information filters. 

Thrun et al. (18), from the observation that the 
normalized information matrix is sparse, developed the 
sparse extended information filter (SEIF), a variant of the 
EIF, that consists in an approximation which maintains 
a sparse representation of environmental dependencies 
to achieve a constant time updating. They were inspired 
by other works on SLAM filters that represent relative 
distances (19-22) but none of them are able to perform a 
constant time updating. 

To overcome the difficulties of both EKF and IF, and to 
be more efficient in terms of computational complexity, a 
combined kalman-information filter SLAM algorithm (CF-
SLAM) has been adopted in (23). It is a combination of 
EKF and EIF that allows to execute highly efficient SLAM 
in large environments. 

Particle filters techniques

Particle filters (13,24,25) comprise a large family of 
sequential Monte Carlo algorithms (26,27); the posterior 
is represented by a set of random state samples, called 
particles. Almost any probabilistic robot model that 
presents a Markov chain formulation can be suitable 
for their application. Their accuracy increases with the 
available computational resource, so it doesn’t require 
a fixed computation time. They are also relatively easy 
to implement: they do not need to linearize non-linear 
models and do not worry about closed-form solutions of 
the conditional probability as in KF. The poor performance 
in higher dimensional spaces is their main limitation. 
Rao-Blackwellized particle filters (24,28-30) lead to more 
efficient solutions, also to the data association problem, but 
these algorithms are susceptible to considerable estimation 
inconsistencies because they generally underestimate their 
own error (31). The need of increasing the consistency of 
estimation, together with the problem of heterogeneity of 
the trajectory samples, brought to the adoption of different 
sampling strategies (32-34).

FastSLAM (24,35,36) denotes a family of algorithms that 
integrates particle filters and EKF. It exploits the fact that 
the features estimates are conditional independent given 
the observations, the controls, and the robot path. This 
implies that the mapping problem can be split into separate 
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problems, one for each feature in the map, considering 
that also the single map errors are independent. FastSLAM 
uses particle filters for estimating the robot path and, 
for each particle, uses the EKF for estimating feature 
locations, offering computational advantages over plain 
EKF implementations and well coping with non-linear 
robot motion models. However, the particle approximation 
doesn’t converge uniformly in time due to the presence of 
the map in the state space, which is a static parameter (37). 

Expectation maximization (EM) technique and 
improvement with missing or hidden data 

The EM (38) is an efficient iterative procedure to compute 
parameter estimation in probabilistic models with missing 
or hidden data. Each iteration consists of two processes: 
the expectation, or E-step, estimating the missing data 
given the current model and the observed data; the M-step, 
which computes parameters maximizing the expected 
log-likelihood found on the E-step. The estimate of the 
missing data from the E-step are used in place of the actual 
missing data. The algorithm guarantees the convergence 
to a local maximum of the objective function. A real-time 
implementation of this algorithm is described in (39).

Since it requires the whole data being available at each 
iteration. an online version has been implemented (40), 
where there is no need to store the data since they are 
used sequentially. This algorithm has been used also to 
relax the assumption that the environment in many SLAM 
problems is static. Most of the existing methods are robust 
for mapping environments that are static, structured, and 
limited in size, while mapping unstructured, dynamic, 
or large-scale environments remains an open research 
problem. In literature, there are mainly two directions: 
partitioning the model into two maps, one holding only 
the static landmarks and the other holding the dynamic 
landmarks (41,42), or trying to track moving objects while 
mapping the static landmarks (43,44). 

Graph-based SLAM techniques

Graph-based SLAM addresses the SLAM problem adopting 
a graphical formulation, which means building a graph 
whose nodes represent robot poses or landmarks, linked by 
soft constraints established by sensor measurements (45);  
this phase is called front-end. The back-end consists 
in correcting the robot poses with the goal of getting a 
consistent map of the environment given the constraints. 

The critical point concerns the configuration of the nodes: 
to be maximally consistent with the measurements, a large 
error minimization problem should be solved.

This technique has been firstly introduced by Lu 
and Milios (22). Bosse et al. (46) developed the ATLAS 
framework, which integrates global and local mapping 
using multiple connected local maps, circumscribing the 
error representation to local areas and adopting topological 
methods to provide a global map managing local submaps. 
Similarly, Estrada et al. proposed Hierarchical SLAM (47) as 
a technique for using independent local maps and the work 
of Nüchter et al. (48) aims at building an integrated SLAM 
system for 3D mapping.

Gutmann and Konolige (49) proposed a powerful 
approach to combine the network construction and loop 
closures detection while running an incremental estimation 
algorithm. Some authors (50-52) applied gradient 
descent to optimize the SLAM problem. Konolige (53) 
and Montemerlo and Thrun (54) introduced conjugate 
gradient into the field of SLAM, which is more efficient 
than gradient descent. GraphSLAM (55) reduces the 
dimensionality of the optimization problem through a 
variable elimination technique. The nonlinear constraints 
are linearized and the resulting least squares problem is 
solved using standard optimization techniques. 

Visual SLAM

A distinct paragraph has been dedicated to visual SLAM, 
since the optical sensors are always more employed in 
robotics applications and specifically in medical surgery. Most 
vision-based systems in SLAM problems are monocular and 
stereo, although those based on trinocular configurations 
also exist (56). Monocular cameras are quite widely used 
(57-64) but the types of camera are various. Large-scale 
direct monocular SLAM (65) uses only RGB images from 
a monocular camera as information about the environment 
and sequentially builds topological map. Omnidirectional 
cameras are gaining popularity: they have a 360° view of the 
environment and given that the features stay longer in the 
field of view, it is easier to find and track them (66,67). To 
improve the accuracy of the features, some works rely on a 
multi-sensor system. The system of Castellanos et al. (68) 
consists of a 2D laser scanner and a camera, implementing an 
EFK-SLAM algorithm. Other examples of the use of EKF in 
visual SLAM can be found in (69,70).

However, a monocular system shows some weaknesses 
in certain situations, e.g., it requires extra computation for 
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depth estimates, scale propagation problems or can lead to 
failure modes due to non-observability.

Stereo systems are hugely adopted in different 
environments, for both landmark detection and motion 
estimation (71-73) in indoor (74-79) and outdoor 
environments (80-82). The adoption of particle filter 
algorithms with stereo vision system have been analysed in 
different works (83-86), but it is not the unique technique 
exploited. Schleicher et al. (87), for example, applied a 
top-down Bayesian method on the images coming from a 
wide-angle stereo camera to identify and localize natural 
landmarks. Lemaire et al. (88) discusses about two vision-
based SLAM strategies where 3D points are used as 
landmarks: one relies on stereovision, where the landmark 
positions are fully observed from a single location; the other 
on a bearing-only approach implemented on monocular 
sequences.  There have been also many successful 
approaches to the visual SLAM problem using the RGB-D 
sensor to exploit the 3D point clouds provided (89,90). 

Most of the visual SLAM systems make use of algorithms 
from the computer vision, in particular the Structure from 
Motion (SfM). Nowadays, thanks to high performance 
computers,  techniques such as bundle adjustment 
(BA) (91) are producing a great interest in the robotics 
community, considering that their sparse representations 
can enhance performance over the EKF. The first BA 
real time application is imputed to Mouragnon et al. (92), 
with the work on the visual odometry, followed by the 
parallel tracking and mapping (PTAM) system of Klein and  
Murray (93). In ORB-SLAM (94), thanks to the covisibility 
graph, tracking and mapping are considered in a local 
covisible area, independent of global map size.

Surgical SLAM

In this section, we will focus on the surgery SLAM 
applications. In medicine areas like assistance, rehabilitation 
and surgery there are several examples of devices and 
algorithms typical of robotics, from which they can benefit: 
special robot manipulators for surgery, control algorithms 
for tele-operation and cognitive algorithms for decision 
learning are just a few of them (95). 

Medical Surgical Systems provide innovative products, 
which have had a profound effect on the performance and 
welfare of health care professionals. Robotic technologies 
have been developed to help the surgeons work and to allow 
optimal and accurate results, without the necessity of being 
in the same location of the patient. They are employed 

for different types of surgeries: from cardiac and open-
heart surgery to prostate surgery, hysterectomies, joint 
replacements and kidney surgeries. 

Da Vinci surgical platform (Intuitive Surgical Inc., 
Sunnyvale, CA, USA) represents a well-known system for 
minimally invasive surgery, which evolved from its first 
release. It consists of three main components: the surgical 
console, the side robotic cart with four robotic arms that 
can be manipulated by the surgeon from the console, and 
a high-definition 3D vision system. The surgical console 
is the main controller of the system, through which the 
surgeon manages the surgical instruments mounted on 
three of the arms of the robotic cart. In accordance with the 
planned procedure, different instruments can be attached. 
The 4th robotic arm is dedicated to the camera control. 
The doctor has the benefit of viewing a 3D video image 
of the procedure being carried out while the robotic arms 
compute the movements of his hands. Another example is 
the Sensei X (Hansen Medical Inc., Mountain View, CA, 
USA), a medical robot designed for performing complex 
cardiac arrhythmia operations using a flexible catheter with 
greater stability and control (96-98). Another commercial 
robotic tool for surgical applications is Navio PFS TM (Blue 
Belt Technologies Inc., Pittsburgh, PA, USA). This handheld 
device comprises a planning and navigation platform with 
precise bone preparation and dynamic soft tissue balancing. 

A plenty of other systems exist, like the DLR MIRO, 
MiroSurge project, and a large part of these studies was 
conducted on cardiac field. The NeuroMate and NeuroArm 
are indeed for neurosurgery applications, like also the 
one introduced by Peters et al. (99). All these systems 
provide improved abilities in diagnosis and less invasive 
but more precise procedures. Furthermore, robots can 
reduce doctors’ strain and fatigue during surgeries lasting 
for hours. Image-guided surgery systems are the most 
adopted since the surgeon has the possibility of observing 
an operation from different viewpoints, allowing him 
to take the best decision on how to proceed. Since they 
include always a tracking device integrated with a surgical 
tool, the doctor is able to know the robot position related 
to some targets in the patient’s body and can thus decide 
where to guide it. One of the most famous image-guidance 
system is the Ensite-NavX (St Jude Medical, St Paul, MN, 
USA). used for cardiac mapping and ablation. It is able to 
3-dimensionally reconstruct the electric activity and the 
cardiac cavities in which the operator visualizes in real-time 
the ablator without the presence of harmful radiations for 
the patient (100). Carto 3 (Bio-Sense Webster, Diamond 
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Bar, CA, USA) is one of the most sophisticated systems 
on the cardiac electro-anatomical mapping, able to guide 
the removal of numerous arrhythmias. It allows the 
precise localization of the ablator thanks to three ultra-
low electromagnetic fields. The anatomical structure of the 
heart is reconstructed through the contact of the ablator 
with the endocardial surface and for each point in the map 
an electric signal is registered (101,102). It has been shown 
clinically that these image-guidance and electro-anatomical 
mapping systems can reduce a doctor’s reliance on radiating 
fluoroscopy (103). 

In (104) and (105) other two examples of image-guidance 
systems that use an electromagnetic tracker registered 
with preoperative images are presented. Zhong et al. (106) 
illustrated an automatic registration method based on 
the Iterative Closest point algorithm to align EM tracker 
measurements with preoperative images, but it requires 
long time (on the order of 40 minutes) to complete (107).  
In (108) authors proposed a software package to create 
custom image-guidance solutions. 

Filtering for surgical applications 

It is possible to find the filtering technique in various works. 
In (109) the pose of a stereoscope is jointly calculated with 
the recovery of the 3D positions of features detected in 
images by means of a EKF algorithm. Grasa et al. (110) also 
implemented an EKF estimator for a monocular SLAM 
approach on real sequences of endoscope images. Similarly, 
in (111) a CCD camera mounted on a fiberscope has been 
employed to reconstruct its motion and the 3D scene 
in which the surgery is going on. EKF is not the unique 
technique; some authors tried to implement an unscented 
particle filter to find the location of an intracardiac echo 
ultrasound catheter using the measurements coming 
from the instrument itself (112). The algorithm doesn’t 
need a prior estimate of the registration: it compares 21 
live ultrasound images with the expected image for each 
particle in the filter during the update step. The authors 
demonstrated the convergence of the algorithm in about 30 
seconds. 

SLAM clinical benefits

Significant tissue deformation prohibits precise registration 
and fusion of pre- and intra-operative data in minimally 
invasive surgeries, mostly like cardiac, gastrointestinal, or 
abdominal ones. If manageable tissue motion is present, 

image-guided surgeries are demonstrated to be effective and 
with many advantages. Nowadays, vision based techniques 
such as SfM and visual SLAM, are considerably spreading 
due to their capabilities of recovering 3D structure and 
laparoscope motion. They have been exploited in many 
anatomical settings such as the abdomen (109,113),  
colon (114), bladder (115) and sinus (116), but the 
assumption of a static structure is required. In fact, it is a 
recurrent hypothesis within the research in this area but most 
surgical procedures cannot accomplish with it (117). SfM has 
been theorized for being used in non-rigid environments but 
the requirement of offline batch processing makes difficult its 
application for real-time uses. In (118), indeed, the estimated 
cardiac surface is considered static in a selected point, while 
in (119) is computed by means of tracking regions of interest 
in the organ. The laparoscopic camera is assumed fixed, 
which is not realistic for in vivo applications. 

SLAM can considerably enhance the performance of 
image-guided surgeries enabling accurate navigation due 
to the continuous awareness of the robot location relative 
to its surroundings. SLAM can surely provide a reliable 
and appropriate model of the operation. The recursive 
adjustment of the probabilistic filtering approach, the 
registration parameters, the surface deformation and the 
robot configuration at each time step allows to get the most 
likely solution. Moreover, surgeries desire to combine data 
from various tracking sensors, images, pre-operative and 
live information. SLAM can considerably contribute to 
this aspect because it was born as a sensor-fusion algorithm 
where information coming from different sources are 
collected and fused together. 

Another improvement that SLAM can make to image-
guided systems is to annotate surface models with motion 
data: in fact, SLAM can estimate the periodic motion of 
nearby surfaces and adding this information to image-
guidance models allows surgeons to plan better the paths 
towards the anatomical targets thanks to a more informative 
graphical interface. In relation to the model displayed, it is 
possible also to compute the uncertainties giving thus to the 
doctor a feedback which is helpful to determine the aspect 
of the visualization system that can be trusted to guide 
the robot precisely. When the robot position is estimated 
in an infeasible pose, given preoperative models, due to 
the inaccuracies, like registration errors, it is possible to 
compute a constraint update step to move it in a feasible 
region, thereby producing a more accurate and reliable 
representation of the operation.

Analysing the literature taken in consideration in this 
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paper, it is possible to notice that the most employed 
technique in SLAM robotics applications, independently 
from the specific field of application, is the KF (Figure 1). In 
particular, the EKF covers the biggest part, maybe due to its 
main advantage of providing a good quality of the estimate 
and it has a relatively low complexity. This is reflected also 
in surgery robotics applications, as illustrated in Figure 2, 
where almost all the works exploit the vision sensors.

Conclusions

Emerging minimally invasive technologies have been 
embraced by many surgical disciplines over the past few 
years. This brought significant advancements in SLAM 
research also in the medical field. In this work, firstly a 
review of the main techniques adopted and implemented to 

solve the SLAM problems has been detailed, considering 
any kind of environment. A distinct paragraph has been 
dedicated to visual SLAM, since the optical sensors 
are always more employed in robotics applications and 
specifically in medical surgery. These systems can translate 
a surgeon’s movements into precise real-time movements of 
the robotic instruments inside a patient’s body and some of 
advanced surgical robotic systems have been summarized. 
From the analysis considered in this work, all known 
approaches to SLAM have their own limitations, but it can 
be stated that the EKF is the most used.
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