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Introduction

Lung cancer is one of the types of the cancer with very high 
incidence rate (1.61 million cases were recorded in 2008; 
12.7% of the total cancer incidents) (1) and is one of the 
leading cancer killers across the world in both genders (1.38 
million deaths were recorded in 2008; 18.2% of the total 
cancer lethality) (2). Common lung cancer causes include: 
smoking (3), exposure to second-hand smoke (4), exposure 
to radon gas (5,6), exposure to asbestos and other chemicals 
including air pollution (7-9), life style (lack of exercise, 
unhealthful diet, excess alcohol) (10), and family history of 
lung cancer. In the UK alone, it was estimated that more 
than 86% of lung cancers in women and around 91% in 
men are connected to the lifestyle, as well as environmental 
influences, showing that smoking is highly correlated with 
the cancer existence (11). Although smoking is considered 
to be one of the main risk factors, it was found that 10–15% 
of all patients with lung cancer have never smoked (11,12).

There are two main structures of lung cancer: 
(I)	 non-small cell lung cancer (around 85% of all the 

lung cancers);

(II)	 small-cell lung cancer (around 15% of all the lung 
cancers). 

Despite the advances in screening, early detection 
imaging and treatment improvement, the survival rate in 
patients with lung cancer prevails to be poor. The major 
reason for the devastating statistics of the lung cancer is 
the shortage of the approved tests able to detect small 
lung cancers, which are possible to be removed by surgery. 
Because of this, a number of preclinical and clinical research 
is done with the goal to optimize current approaches 
for both lung cancer types. The end goal is to optimize 
the outcomes by addressing the issues of prognostic and 
predictive factors which can affect the treatment outcome. 

The importance of lung cancer analysis and treatment 
can be seen in many projects that are currently running 
or are finished; with the aim to understand the prediction 
of cancer development better and prescribe the adequate 
therapy. Some of the most influential projects are:
	 REQUITE: Validating Predictive Models and 

Biomarkers of Radiotherapy Toxicity to Reduce 
Side-Effects and Improve Quality of Life in Cancer 
Survivor (13); 
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	 LungCARD—Blood test for clinical therapy 
guidance of non-small cell lung cancer patients (14); 

	 R A S TA R G E T — Ta r g e t i n g  R A S  o n c o g e n e 
addiction (15); 

	 PREDECT—New Models for Preclinical Evaluation 
of Drug Efficacy in Common Solid Tumours (16).

Concept of personalized medicine, where therapeutic 
decisions are created based on the genetic and histologic 
characteristics of the cancer, has been a significant 
improvement to a standard lung cancer diagnosis and 
treatment. Lung cancer molecular profiling has been 
nowadays improved by the advancements in scientific and 
technological cancer genome research. Cancer gene analysis 
of mutations has moved from the analysis of single gene to 
the analysis of next-generation global genome sequencing, 
meaning whole cancer genome sequencing. The growing 
magnitude of information about genomics is forecasted to 
improve our current knowledge of lung cancer significantly 
and would lead to the use of personalized lung cancer 
therapy as a standard therapy. Based on the current genetic 
and genomic database of lung cancer, researchers have been 
able to understand better the differences with respect to 
the lung cancer genetics, different human races crosswise. 
These results could potentially lead to improved treatment 
algorithm and therapeutic choices. 

Lung cancer prevention and treatment—the role 
of ‘omics’ data

Researchers have found strong links between lung cancer 
mortality and gender, lifestyle factors, environmental 
factors and socioeconomic factors (17). In this age, where 
a number of targeted therapy and daily tests for predictive 
or prognostic molecular markers for many diseases are 
available, the availability of ‘omics’ data has high potential 
to be used for the lung cancer. 

Biomarkers obtained from blood are a main evaluation 
target, as the blood is obtained daily in primary care clinics, 
with the minimal risk. Biggest efforts are focused on 
identification of genomics (genes) and proteomics (proteins) 
discharged by the tumor into blood. However, there are 
many challenges. The main challenge is the large molecular 
heterogeneity that can be found even for histologically 
similar tumors that may maintain disruption of different 
components of similar pathways, alterations to different 
cellular pathways, as well as unique disruption mechanisms 
to genes or pathways. 

Besides the tumor variability, another big challenge is the 

fact that proteins and genes can provide only a small “image” 
of a tumor’s existence in the human body. The analysis 
of data requires a multi-omics systems-based approach 
that addresses several omics data types from each cancer 
specimen individually, followed then by integration of the 
mentioned dimensions in order to identify the primary 
genes and pathways that drive the associated phenotype (18) 
as well as tumor biomarkers that will enable prevention and 
early treatment. 

Currently, two large international research (International 
Cancer Genome Consortium - ICGC and The Cancer 
Genome Atlas - TCGA) efforts are compiling ‘omics’ data 
for several cancer types. Their goal is to compile openly 
available ‘omics’ in order to improve our understanding of 
the molecular mechanisms driving cancer (19,20). Beside 
these two, there are also the NIH Roadmap Epigenomics 
Mapping Consortium (EMC), public resource that contains 
epigenomics maps for stem cells and normal tissues (21), 
and the Personal Genome Project (PGP), which tendency 
to create integrated and highly comprehensive human 
genome maps integrated with phenome data (22). 

Application of computational modelling

Recently, the field of personalized medicine has been 
popularized with the fast development of the next generation 
sequencing, which caused higher throughput and lower 
costs (23,24). Additionally, public databases and platforms, 
i.e., GEO, TCGA, and ENCODE, contain significant 
amount of data for analysis (25). Systems biology with its 
multiomic data used in deep analyses for predictions, can 
provide additional insights into the mechanisms of complex 
diseases, especially for the various human cancers (26-28). 
Some recent developments regarding high-throughput 
technologies drive the systems biology in direction of 
creating more precise models to describe complex diseases. 
Mathematical, as well as computational models are used 
for the purposes to help us understand the omics data that 
are produced by high-throughput experimental techniques. 
The help of computational models in the area of systems 
biology, enables us to investigate the pathogenesis of 
complex diseases, further improve our understanding of 
latent molecular mechanisms, as well as promote treatment 
optimization strategies and new drug discoveries (29).

The bridge between theory and modelling in cancer 
can be accomplished by using two major complementary 
strategies—bottom-up approach, starting from the ‘omics’ 
data and top-down approach, where computer science and 
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theoretical knowledge are the basis in creating models 
that describe dynamics of the system and its mechanisms. 
These two approaches can also be coupled to accomplish 
multi-scale models by combining wide biological scope 
and detailed mechanisms (30). In the context of translating 
cancer ‘omics’ data into clinical use, information sharing 
between medical research, epidemiology (cohort studies) 
and clinical medicine (prevention and treatment) is crucial. 
Multiscale models and computational platforms provide 
integration of the data and knowledge from these three 
areas.

Mathematical and computational modelling of biological 
systems at several scales is a good approach in discovering 
new drugs in clinical cancer therapy. At intracellular scale, 
these networks clarify how the cells regulate signaling 
or metabolic pathways in order to respond to the drug 
treatment or external perturbations (31). At intercellular 
scale, cell-cell communication networks explain how 
different cell types communicate using various ligands to 
speed up tumor growth, angiogenesis and metastasis (32). 
At tissue scale, studies on how these ligands diffuse and 
distribute in the 3D tumor space are quite valuable. With 
the advances of high-throughput technologies, systems 
biology rapidly develops. However, the development of 
mathematical modelling is constantly challenged by the new 
biological questions that arise (33).

Inhalation Drug Delivery Model—modelling of 
alveolar ducts in more detail

The Inhalation Drug Delivery Model is developed by our 
research group and because of that, we devote this part of 
the review paper to describe it in more detail. The results 
presented below are already published and we describe 
the modelling approach used by our research group in 
dealing with modelling of the described phenomena (34,35). 
Physicochemical characteristics of drug particles are 
important factors for the design of inhalation drug therapy, 
because they influence the distribution of drug delivery 
sites. That is the most essential determinant of where drug 
particles are delivered is the ventilation distribution. The 
reason for this is because drug particles, unlike respiratory 
gases (e.g, O2, CO2), are transported convectively with 
airflow in the lung airways.

Airflow is determined by the pressure difference 
(ΔP) between two points. In the case of the lung, along 
the airways the two points we should consider are the 
pressure at the airway opening (Pao) and the pressure at the 

alveoli (Palv). The distribution of inhaled air in the lungs 
is determined by the difference of time constant of each 
pathway (36). Pathway time constant is a product of airway 
resistance (R) and terminal compliance (C). Under normal 
breathing conditions (i.e., with spontaneous breathing 
frequencies), C normally dominates R (37), thus for 
normal/healthy subjects without tumors in the airways, the 
distribution of the terminal compliance C (i.e., downstream 
conditions) determines airflow distribution. Since the 
compliance of the lung is generally uniform (expect Capex 
< Cbase or gravity effects), the inspired air, and with it the 
inhaled drug particles, are considered to be distributed 
proportional to ventilation, namely, proportional to local 
lung size (e.g., the size of the lobe) (38). For instance, 
the larger lobe receives more air volume, thus more drug 
particles.

However, when airways are blocked by tumors, such as 
in lung cancer cases, the situation is quite different. Airflow 
distribution, thus the distribution of inhaled drug particles, 
is influenced by a combination of the local fluid mechanics 
around the tumors and the downstream flow conditions. 

Flow conditions

Since the lungs consist of several hundred million alveoli 
(small air sacs where the gas exchange occurs), most of 
the lung volume is accounted by the alveolated region of 
the lungs. Although bronchioles and alveolated airways in 
the acinus contribute much less to airway flow resistance, 
compared to larger airways (bronchi) and the flow is 
nominally laminar, alveolar fluid mechanics are complex due 
to peculiar alveolated wall anatomy (which is also coupled 
with parenchyma tissue mechanics) and also depends on the 
exact location in the 8–9 generations along acinar tree.

To determine the downstream flow conditions of airflow 
distribution (i.e., the distribution of inhaled drug particles) 
in the whole lung, we will sum alveolar flows of each path 
by calculating the alveolar flow of each generation of the 
path (Figure 1) in a 3-cell alveolated duct model (Figure 2) 
with various downstream boundary conditions (Qdist) (35), 
representing the distal volume to which that generation is 
connected (Figure 1, explained in detail below).

Detailed description is as follows. We assume that 
all lengths change with time in the same manner i.e., 
( ) ( )l t l f t= , where the overbar signifies the mean value. 

Hence, the volume ( ) ( )3V t V f t= . The time rate of change 
of downstream distal volume produces the volume flow rate 
crossing the distal boundary of the model. Hence, 
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Figure 1 Downstream flow conditions for each alveolar path.

Qdist Distal pathway volume

( ) ( )3 23dist distdist dist
d dQ V V f t V f t f
dt dt

= = =

If we assume a sinusoidal variation of length with 

t ime;  i .e . ,  ( ) 1 sinf t K tω= + ,  where K=(ϕ–1)/(ϕ+1) , 

ϕ=(1+C)1/3, /T FRCC V V= , VT is the tidal volume, VFRC is 

the functional residual capacity (volume), and ω=2π⁄T, 

where T is the breathing period, then cosd f K t
dt

ω ω=   

and ( )23 1+ sin cosdistQdist V K K t tω ω ω=  (39).
Distal volume numbers and average dimensions of 

alveolar ducts are given in Table 1. The variable f signifies 
the percentage of duct surface that is alveolated. In the 
table, both global, z, and, acinar, i, numbering of the airway 
generations are given. For instance, in the global system, 
the alveoli first appear in generation 15. This generation is 
designated generation 0 in the acinar system.

The total volume distal of a particular duct can be written 

as 
8

, ,1
2 j i

dist i ad jj i
V V−

= +
=∑ , Vad,i is the combined volume 

(alveolar volume surrounding the duct plus the duct volume) 
of a typical duct in acinar generation i. It is assumed that the 
alveolar volume surrounding a duct is proportional to the 
ratio of the duct’s alveolated surface area to the total surface 

area of all ducts in the acinus; i.e., 
, 2

, =
4

duct i
ad j acinus i i

tot

S
V V d l

S
π

+  

where Sduct,i=πdil if i,  8
,0

2i
tot duct ii

S S
=

=∑  and 152
resp

acinus

V
V =  

where 
23 2

0
2

4
i

resp FRC i ii
V V d lπ

=
= −∑ .

A sample calculation of Vdist is given below (Table 2) 
Vtot(0<z<23)=441.26ml, Vresp=2058.74ml, Vacinus=0.06283ml. It 
should be noted that the values given for Vdist are at FRC. 
These numbers can be adjusted to average values using 

1 11 =1+
2 2

T

FRC FRC

VV C
V V

= +

Data used to compute Vacinus are given in Table 2. The 
lengths and diameter data are from Weibel (40) and Weilbel 
et al. (41), scaled to FRC. 

Total volumes (alveolar and duct) for a typical duct 
in each acinar generation are given in Table 3 (Stot). 
Components and total distal volume of a typical duct in 
each acinar generation are given in Figure 3. 

Main limitations of the presented study are that this 
model is a parametric model, meaning it is simplified and 
not patient specific. However, the presented model is on 
an acinus level, so differences among people may not be 
noticeable. The possible easy adaptation of this model to 
different generations allows several parameters (i.e., flow) 
to be examined. In vivo tests are very hard to perform in 
animals, and even harder in humans due to regulations, 
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Table 1 Average dimensions of alveolar ducts at FRC of 2,500 mL 

z n=2^z i m=2^i d (mm) l (mm) f

15 32768 0 1 0.43 1.13 0.2

16 65536 1 2 0.38 0.93 0.4

17 131072 2 4 0.34 0.78 0.7

18 262144 3 8 0.30 0.67 1

19 524288 4 16 0.28 0.59 1

20 1048576 5 32 0.25 0.54 1

21 2097152 6 64 0.24 0.51 1

22 4194304 7 128 0.22 0.50 1

23 8388608 8 256 0.21 0.51 1

Table 2 Lung airway data at FRC (FRC =2,500 mL)

z d (mm) l (mm) n Vol (m3)

0 18 120 1 3.05E-05

1 12.2 47.6 2 1.11E-05

2 6.66 15.25 4 2.12E-06

3 4.49 6.10 8 7.74E-07

4 3.61 10.19 16 1.67E-06

5 2.81 8.59 32 1.70E-06

6 2.25 7.22 64 1.83E-06

7 1.85 6.10 128 2.09E-06

8 1.49 5.14 256 2.30E-06

9 1.24 4.33 512 2.66E-06

10 1.04 3.69 1,024 3.23E-06

11 0.85 2.86 2,048 3.28E-06

12 0.69 2.21 4,096 3.33E-06

13 0.56 1.71 8,192 3.38E-06

14 0.45 1.32 16,384 3.44E-06

15 0.36 1.02 32,768 3.48E-06

16 0.36 0.97 65,536 6.62E-06

17 0.36 0.82 13,107 1.07E-05

18 0.29 0.68 262,144 1.18E-05

19 0.28 0.60 524,288 1.91E-05

20 0.26 0.51 1,048,576 2.89E-05

21 0.25 0.51 2,097,152 5.15E-05

22 0.23 0.51 4,194,304 8.57E-05

23 0.21 0.51 83,886,008 1.50E-04
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Table 3 Duct surface area and total volumes of a typical duct in each acinar generation

i S_duct (mm2) S_gen (mm2) S_duct/S_tot V_ad (mL)

0 0.233423 0.233423 0.001236 0.000184

1 0.443503 0.887006 0.002348 0.000249

2 0.640512 2.562047 0.003392 0.000295

3 0.620237 4.961899 0.003284 0.000252

4 0.525868 8.413886 0.002784 0.000211

5 0.420161 13.445145 0.002225 0.000167

6 0.396819 25.396385 0.002101 0.000157

7 0.361805 46.311056 0.001916 0.000141

8 0.338463 86.646491 0.001792 0.000130

Figure 3 Distal volumes.

V_ad m Gen. 0 Gen. 1 Gen. 2 Gen. 3 Gen. 4 Gen. 5 Gen. 6 Gen. 7

0.00184 1

0.00249 2 0.000497

0.00295 4 0.001179 2 0.00589

0.00252 8 0.002012 4 0.001006 2 0.000503

0.000211 16 0.003381 8 0.001691 4 0.000845 2 0.000423

0.000167 32 0.005354 16 0.002677 8 0.001339 4 0.000669 2 0.000335

0.000157 64 0.010021 32 0.005011 16 0.002505 8 0.01253 4 0.000626 2 0.000313

0.000141 128 0.018021 64 0.009011 32 0.004505 16 0.002253 8 0.001126 4 0.000563 2 0.000282

0.000130 256 0.033401 128 0.016701 64 0.008350 32 0.004175 16 0.002088 8 0.001044 4 0.000522 2 0.000261

V_dist 0.007387 0.03669 0.01805 0.00877 0.00417 0.001920 0.000803 0.00261

so simulations can be helpful in this case to gain more 
knowledge on what happens on acinus level. This will be 
crucial in drug delivery analysis, in order to increase the 
efficiency of inhalers etc.

Finite element simulation in Lung Cancer 
Research

Success of any cancer therapy ultimately can be reduced 
to a degree of success of delivery of drug to the cancerous 
cells within tumor. From this physics point of view, the 
therapy can be considered as the transport problem of drug 
molecules, from blood vessels to the cell interior. On that 
path, drug molecules, and others important in the tumor 
formation and progression (as metabolic products, oxygen, 

etc.), go over different micro and macro environments—
extracellular/intracellular space, interior of organelles, all of 
them in blood, as well as biological barriers—membranes 
of cells and organelles and walls of blood vessels. A lot of 
aspects of mass transport remains unknown, especially the 
biophysical mechanisms that govern the drug delivery. 

The main research strategy counts  on cl inical 
investigations and laboratory, for example, those relying 
on nanotechnology (in view of transport called the 
oncophysics) (42-44). Paralelly, a great amount of efforts has 
been directed towards the development of computational 
tools for additional investigations of the intricate process of 
mass and transport exchange within capillary-tissue system 
in general and within tumors. As far as transport within 
tumors is considered, there exist additional complexities, 
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mainly because of the variability of vessel diameters and 
lengths and irregular blood vessel branching (45,46). 
Experiments related to the flow within tumor vasculature 
unveiled that blood flow depends on several parameters 
including geometric resistance (47) (measure of network 
irregularities), viscous resistance (48), and RBC mechanical 
properties (49). Fundamental characteristics of blood flow 
inside tumor vasculature are presented in Jain (50), whilst 
the data regarding capillary wall transport parameters 
(hydraulic conductivity, vascular permeability and reflection 
coefficient) is shown in Jain (51).

Mass transport and exchange within cells is one of the 
most important processes in living organisms. The factors, 
which affect intracellular mass exchange, range from 
biochemical to mechanical, to signaling pathways (52). A 
computational framework for modeling mass exchange 
within cells, defined as ‘virtual cell’, is reported in Schaff 
et al. (53) and Moraru et al. (54), which was further used in 
many applications, as, for example in Slepchenko et al. (55).

Regarding computational methods, it can be stated that 
there is no general concept for mass transport within vessels 
(large and capillary blood vessels and lymph), extracellular 
space and cell interior. The basis for a general virtual lung 
transport model relies on recently developed Composite 
Smeared Finite Element (CSFE) (56), with improvements 
of accuracy (57), further enhanced to include lymphatic 
system (58), and generalized as a multiscale element which 
includes cell interior with organelles (59). 

The CSFE brings fundamental change in the power 
of computational models in modeling complex process of 
mass transport in biological system, and particularly in drug 
delivery in tumors. This new methodology is general, robust 
and easy for implementation into modern software and 
tools within cloud computing. Data for the element include 
hydraulic, diffusive, electrical and chemical parameters for 
each physical domain and for biological barriers, and also 
volumetric fraction of each compartment. Physical fields 
are coupled by connectivity elements at each element node. 
A detailed study of accuracy of solutions obtained using the 
CSFE is given in Kojic (59). 

Machine learning-based state-of-the-art methods 
for analysis of the NSCLC data 

Many recent studies have analysed lung related TCGA 
data by using various machine learning approaches in order 
to predict quantity of interest. For instance, Yu et al. (60),  
appl ied severa l  machine learning approaches  on 

haematoxylin and eosin stained histopathology whole-slide 
lung adenocarcinoma images and squamous cell carcinoma 
patients from TCGA in order to differentiate between 
the shorter- and longer-term survivors with squamous cell 
carcinoma or stage I adenocarcinoma. For this purpose, 
authors extracted 9,879 quantitative image features and 
thereafter fed these features as inputs to elastic net-Cox 
proportional hazards models to identify the quantitative 
image features with most information, as well as to 
calculate survival indices. Thereafter, patients were into two 
categories—longer- or shorter-term survivors (based on their 
survival indices). In addition, authors used several machine-
learning approaches, including naive Bayes, support vector 
machines and random forest, in order to: (I) distinguish 
malignancy from normal adjacent tissue, and (II) distinguish 
between adenocarcinoma and squamous cell carcinoma.

Adenocarcinoma and squamous cell carcinoma are the 
dominant histological types in lung cancers. Differentiating 
between these subtypes is very important as they have 
different treatment implications and prognosis. In Pineda 
et al. (61), authors used TCGA gene expression and DNA 
methylation data in order to discriminate between the 
two lung cancer subtypes. In this paper, authors used the 
ReliefF feature selection algorithm to determine relevant 
variables (genes), which were used to build a classification 
model based on naïve Bayes theorem. Authors confirmed 
biological relevance of their method by confirming that 
93% of the selected genes are related to cancer.

Visual analysis of histopathology images with lung cell 
tissues is main method used by pathologists to determine 
the lung cancer stage, types and sub-types. In Coudray 
et al. (62), authors created a deep learning convolutional 
neural network based on histopathology images retrieved 
from TCGA in order to classify accurately the whole-slide 
pathology images into categories—normal lung tissue, 
adenocarcinoma or squamous cell carcinoma. Authors 
reported results that outperformed a human pathologist, 
with approximately 0.97 average AUC on a held-out 
population of whole-slide scans. In addition, authors used 
the neural network in prediction of the ten genes that 
are most commonly mutated in lung adenocarcinoma 
and discovered that six of the investigated genes—
STK11, EGFR, FAT1, SETBP1, KRAS and TP53—can be 
prognosticated from pathology images (accuracy was in 
range from 0.733 to 0.856), as measured by the AUC on the 
held-out population.

In Yu et al. (63), authors exploited TCGA data of 
538 lung adenocarcinoma patients to predict lung 
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adenocarcinoma grade based on gene and protein 
expression levels. In addition, authors created an integrative 
histopathology-transcriptomics model in order to build the 
better prognostic (survival) predictions for stage I patients 
in comparison to the histopathology or gene expression 
studies alone.

Conclusions

Currently, researchers are focusing on the discovery of 
new drugs for cancer therapy, although molecular and cell 
biology had improved our understanding of many complex 
diseases in the last decades. In addition, research in lung 
cancer has become not only extensive but very much inter-
professional, aiming to bring together important advances 
in various fields (medical and non-medical) for the sake of 
better understanding of the disease. This in turn can lead 
to optimized approaches in the diagnosis and treatment of 
each particular patient, which is usually seen as ultimate goal 
of “personalized medicine”. One such example is focused 
on predicting tumor growth. It can be used for multiple 
purposes such as providing information that can be used 
to disclose biological characteristics of the tumor (volume 
and cell kinetics), impact of various factors such as cell type, 
tumor size etc. These results could eventually lead to our 
better understanding of the natural history of the tumor that 
can influence our diagnostic and therapeutic decisions and 
tailor “optimal” treatment in lung cancer patients.
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